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We present a systematic statistical mechanical analysis of the conformational properties of a stiff polyelec-
trolyte chain with intrachain attractions that are due to counterion correlations. We show that the mean-field
solution corresponds to an Euler-like buckling instability. The effect of the conformational fluctuations on the
buckling instability is investigated, first, qualitatively, within the harmofiisemiclassical’) theory, then,
systematically, within a @ expansion, wheral denotes the dimension of embedding space. Within the
“semiclassical” approximation, we predict that the effect of fluctuations is to renormalize the effective per-
sistence length to smaller values, but not to change the nature of the medn€iellickling behavior. Based
on the 14l expansion we are, however, led to conclude that thermal fluctuations are responsible for a change of
the buckling behavior which is turned into a polymer collapse. A phase diagram is constructed in which a
sequence of collapse transitions terminates at a buckling instability that occurs at a place that varies with the
magnitude of the bare persistence length of the polymer chain, as well as with the strength and range of the
attractive potentialfS1063-651X99)04708-X

PACS numbd(s): 61.25.Hq, 61.20.Qg, 87.15.Nn

[. INTRODUCTION equation which is solved for different models of interaction
potentials. We determine hoV,, the critical strength of the
Recently, the phenomenon of DNA condensation hagpotential at which buckling sets in, depends on the length of
been subject to renewed interd4t2]. It appears that the the polyelectrolyte. Below the instability, the chain is
attractive forces generated by the correlated fluctuations dtraight whereas above the instability point, the chain buck-
Ref.[3] or positions of Ref[4] condensed counterions play les from intrachain attractions.
an essential role in bringing about a sudden aggregation of In steps, we then treat the effect of the fluctuations on this
the DNA moleculés). These interactions are quite intricate mean-field picture, first, within a harmonic theory that Odijk
since they can be described by a pairwise additive potentidtL1], in a related context, has dubbed the “semiclassical”
only at very low concentrations of DNA3,5]. For dense picture. This picture is strictly valid only when fluctuation
DNA mesophases, many-body effects appear to be essentigffects are quantitatively small. At this level, there are indi-
[6] and any theory of the DNA condensed state ought to taations that the buckling instability is preserved but that ther-
take them into account. In comparison, the description of thenal fluctuations tend to renormalize the value of the persis-
solution phase, where pairwise additive interactions makéence length of the chain, so as to makesniallerthan the
sense, promises to be much simpler and more easily withibare value. The harmonic approach breaks down close to the
reach. buckling instability where conformational fluctuations be-
Our goal here is to assess some of the fundamental cowome large. The predictions can therefore only be considered
sequences that attractive electrostatic correlation forces hawes plausible trends.
on the thermodynamic properties of stiff, charged polymers. The inclusion of thermal fluctuations of arbitrary strength,
In certain respects this problem has already received somewever, does not conform to the mean-field or the “semi-
attention in the framework of liquid crystalline ordering of classical” picture. We propose an approach that can describe
polyelectrolye solution§7,8]. Here we find it useful to focus properly the thermodynamic properties of the chain for any
entirely on single-chain properties. A related approach waset of parameters. This approach involves a systematic 1/
introduced recently by Golestania al. [9]. expansior] 12] of the partition function, wherd denotes the
We start with the mean field theory of a stiff polyelectro- dimension of embedding space. We prove that, in general,
lyte chain, where thermal fluctuations are ignored; we fincthermal fluctuations completely destroy tkmean-field or
that counterion correlation attractions should induce an‘semiclassical”) buckling instability and convert it into a
Euler-like buckling instability of the chaifil0]. Formally,  polymer collaps¢7]. By varying the bare persistence length,
we show that at zero temperature, the buckling instability isand the strength and range of the attractive potential, we
associated with nontrivial solutions of a Schimger-like determine a complete phase diagram. We find that true buck-
ling occurs only at zero temperatuer infinite persistence
length and that thermal fluctuations at any finite temperature
* Author to whom correspondence should be addressed. Electronitirn buckling into collapse. We do not address the nature of
address: rudi@helix.nih.gov the collapsed stat@s was done in, e.g., RgB]); we would
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have to include consistently in the theory many-body, non- | L
pairwise additive effects in the electrostatic correlation at- g
tractions. This, however, is still too difficult. .—Q—+—Q—Q“m+-.‘

As with many concepts in polyelectrolyte theory, the idea
that an Euler-like elastic buckling instability could lie at the
core of the polymer collapse problem has been put forth by
Manning in relation to DNA condensatidii3]. Manning's
calculation, however, does not take into account explicitly
the attractive part of the interaction potential along the poly-
electrolyte molecule. The same is true for the recent analysis
set forth by Odijk[11]. Here we shift the perspective by
explicitly considering the contribution of attractive forces be-
tween polyelectrolyte segments to the onset of a buckling
instability. In addition, we show how thermal fluctuations FIG. 1. Schematic representation of buckling. In a buckled
may transform the buckling behavior into a polymer col-chain, the effective separation between segments becomes smaller,
lapse. which lowers the free energy of the chain if the interactions be-

The exact form of the counterion fluctuation potential in tween segments are attractive. T_his decrease in the_free energy
the regime where pairwise additivity makes sense is not OYvorI<_§ against the increased bending energy, thus leading to an in-
serious concern here. Our theory is valid for any form. WeS@Piity:
indicate that generally by doing some of the calculations for

different model forms of the pair potential. However, general  r— & Ld_s+ EJLJLdsdqur(s)— r(s")))
arguments based on the analysis of the asymptotic form of 2Jor? 2JolJo

the counterion fluctuation forces indicate quite strongly b\ 2

[3,14] that it is not unreasonable to expect that the effective  _ ﬁf" Nl +EJLdestV(lr(s)—r(s’)l)
pair interaction potentiaV/(r) is of the generic formV(r) 2 Jo 9s? 2Jo Jo '

=—|vo|(1/r)%e~2<", where r is the monomer-monomer
. ) . (1)
separationy sets the energy scale for the interaction, and
an inverse screening length. We often invoke this form but itwherer(s) denotes a general parametrization of the polymer
is not essential for general conclusions. chain,s the contour length, ang(s)—r(s’)| is the distance
The organization of this paper is as follows. In Sec. Il wein embedding space between two monomersads’. K.
present the mesoscopic free energy of the chain and derive the elastic modulus, which is related to the bare persis-
the elastic equilibriunimean-field equation for its shape. In tence lengthl, via K./kgT=1,. Finally, V(r(s)—r(s")])
Sec. Il we investigate numerically the nature of this insta-denotes the monomer-monomer interaction potential as-
bility for different model interaction potentials. Next we turn sumed to be purely attractivanless indicated otherwisein
to the effect of the fluctuations. The harmofiisemiclassi- ~What follows we shall remain within the framework of the
cal”) theory is considered in Sec. IV. The analysis based offuler elastic rod theory, ignoring possible nonplanar con-
a systematic H expansion of the partition function, is pre- figurations pertinent to the Kirchhoffian descriptigt].
sented in Sec. V. Finally, in Sec. VI we discuss our results SINC& we limit ourselves to considering inextensible

and address the question of possible experimental ramific&N2ins, we ought, in principle, to take into account the con-
tions of our results. straintdgr (s) - d¢r (s) =1 for any pointr(s) along the chain.

For weak undulations, or, in the limit of validity of the mean-
field approximation, this constraint can be safely ignored
[11]. In general, however, one has to deal with it appropri-
ately; see Sec. V.
In the mean-field approximation we determine a typical
The idea of an interaction-induced buckling instability is configuration of the polymer by functionally minimizing the
really quite intuitive; see Fig. 1. At the point where the elas-free energy with respect tq(s). The result of such a varia-
tic energy of bending can no longer compensate for thejon is
change of the interaction energy due to diminished separa-
tions between the interacting segments of the polymer chain, d*r(s) , )
the polymer will buckle. Clearly, this buckling depends on Ke P +j ds'F(r(s)=r(s")=0, 2
the persistence length of the polymer as well as on the
“strength” of the attractive interactions between its seg-whereF(|r(s)—r(s’)|)=—dV/ar(s) is the local force den-
ments. sity. This equation determines the typical polymer configu-
The starting point for a mean-field description of this ration subject to appropriate boundary conditions. It is easy
buckling instability is the identification of a mesoscopic freeto show that if we consider a polymer with noninteracting
energy of the self-interacting persistent polymer. We suggeshonomers subject to the boundary conditions that the ends
here that this free energy may be written as a sum of conef the polymer do not bend, the solution to the mean-field
figurational elastic energy and pair-interaction energy for allequation, Eq(2), corresponds to a straight rodlike configu-
the monomers: ration. If we imagine that the attractive potential between

IIl. MEAN-FIELD THEORY
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monomers is weak, then deformations away from the rodlike In the case of short range interactions, the rhs term of the

configuration must be small. Under such circumstances, it i€uler-Lagrange equation, E¢6), can be simplified further.

useful to change the parametrization of the polymer and t&ignificant contributions to the integral on the rhs of Es).

describe the polymer, and solve the mean-field equation, in @me only from the points along the polymer for whicand

coordinate system which is well suited to describe small dez’ are not very far apart. Therefore, one can develop

formations away from the straight configuration. V(r(z)—r(z')) in powers ofz—z', truncating the Taylor
Specifically, for small deviations from a straight configu- expansion at the first order term

ration, the polymer chain can be parametrized rés)

=(z,p(2)), wherez is the direction of the axis of the mol- , _dp(2) ,

ecule and|p| is the radial distance from that axis. In this pZ)=p()= =g~ (z=2)+ -

parametrization one hass=dz\1+ (dp(z)/dz)? and

r(z)—r(z")=(z-2",p(2)—p(2"))
d?p(z)/dZ

1
. . B [ . dp(2)
R [1+(dp(2)/d2)*]* =(z=2)| 15, (7)
}Nlilth p'(2)=dp(z2)/dz, the free energy can be written as Thus we end up with the following approximation:
ollows:
L NV(r@)-r(z))] _ av(ul)
F= [ aztip 2.0 2.p0.2 0(2) 0
0
1 (L p'(2)(z—2")
~ SKe | 2 @)1 (' (271" -2 [1+ (12 (@ (2)°+ -]
0
L N(|z—2']) 2+ ®
L (L =——p e
= Jz
+ Zfo fo dzdZ

5 . To the lowest order irp’(z), the Euler-Lagrange equation
XN1+(p' (2)V1+ (' (2)?V(r(2—r(z)]). 3  reads

The Euler-Lagrange equation for this free energy reads . Lo S
ch“V’(z)—Jodz V(|z=2'|)p"(2)=0. )
oL d  ac +d2 L 0 .

ap(z) dz p' (2) 42 ap'(2) e (4) Equation(9) is the fundamental mean-field equation describ-

ing the shape of the elastic rod in the limit of small defor-
mations and short range self-interactions. It is closely related
to the Schrdinger equation if one introduces the variable
u(2)=p"(2). One finds

Since here we will be interested only in the limit of a straight
rod solution, we can linearize E),

d*p(z) L d(dp(z) , u”(z)—Q?%z)u(z)=0
KCF_J'O dz d_z( 4, Vir@-r))h
L
fL N(r(2)-r(2"))) with Qz(z)ch’lf dz’'VvV(|]z—2'|), (10
=—| dz . 5 0
0 ap(z)

and the boundary condition assumes the form
The first term on the left-hand sidéhs) of Eq. (5) stems
from the curvature energy. The second is the longitudinal u(z=0L)=0. (11
stress acting along the deformed rod. The term on the rh
corresponds to the transverse bending f¢id}. Both of the
last two terms depend on the characteristics and the details 8hts the part that corresponds p(2)=0, i.c.. p(z)=A

the interaction potential. . ; .
By considering the first variation of the free energy at the " BZ’. corresponding to a straight undeformed rod. The field
u(z) is therefore a good measure of how much the polymer

boundaries, we derive the boundary conditions for &5, is deformed away from the straight rod configuration. In the

Assuming that both ends are free, i.e., that the variations o ulerian description ali(2)'s are coplanar
op(z=0L) and dp’(z=0L) are arbitrary, we find The mean-field equation, EL0), is not easily solvable
p'(z=0L)=0 except for a limited variety of potential(z). Nevertheless,
' ' a formal solution can be obtained by introducing the follow-
ing ansatz fou(z), assumed now to lie within a single plane
=0. (Eulerian description

§y definition, )(z) is a symmetric function with respect to
Bl?e midpoint of the rod. By integrating(z) = p"(z), one also

p”’(z=O,L)—p’(z=0,L)foLdz’V(r(z=0,L)—r(z’))

(6) u(z)=Cn(z)sin(®(z,0)). (12
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C is a normalization constant introduced in order to make
7(z) dimensionless. The functiongz) and®(z,0) are eas-
ily shown to satisfy the following set of equations:

L
Qz(z)=K;1f dz'V(|z—2'|)
0

[ 2Vryg .
— . rg<z<L-—ry,
7"(2)+Q%(2)9(2) — n(2)(®'(2,2'))°=0 Ke @ 0 °
Vo(z+r1g)
(PA(2)®'(2,2))'=0. (13 Tk (18
. . e _ . Vo(L—=2z+ry)
The instability point is reached when the following identity B — L—ro<z<L.
is fulfilled: \ c
The solutions of the mean-field equation, EfQ), with this
1 (L dt potential are the angular functions and the Airy functions
[fo 20 =, (14)  [18]. Taking into account the boundary condition and the

continuity of the solution and its derivatives at the disconti-
nuities of the potential, Eq(17), we obtain the following
which follows from the fact that the non-trivial solution approximate form for the critical magnitude o, :

should satisfy the boundary condition E@L1) which is

translated into si®((L,0))=0. Equation(14) selects the Vrol? a2 Wzrg
lowest mode compatible with this condition. CrK—~ > 1+ FURIER (29
Because the functiom(z) still has to be evaluated, this is ¢ 6L

nothing but a formal statement of the properties of the solu-
tion of the mean-field equation. The general properties cafror large enought, the scaling behavior d¥, has already
be obtained from a WKB ansaf7]. At this level, the com- been determined by Mannind3]. Obviously, the scaling
parability »~2(z) ~Q(z), leads to a stability limit described form derived in Ref[13] is only valid when the condition
by ro/L<<1 is satisfied.

The next explicitly solvable model is the exponential po-
tential, which can be viewed as a generic form of a short

L L .
f dz\/f dz’ﬁV(|z—z’|)’: BK . (15) range potential. Here
0 0
V(r)=—Vqe "o, (20)

The necessary condition for the existence of the instability is i ] _
whereV, is a constant. For this potential

L
fo dz'V(|z—z'|)<0. (16) Qz(z)nglfoLdz’V(lz—Z’l)

The properties of this instabilitybifurcation point are the :ZVOrO _ 2Vl

same as in the case of the simpler Euler instability where the K Ke

elastic rod is simply compressed at both ends by a transverse

force. This latter case has previously been considered bwhere we have displaced the origin of thexis to the mid-

Manning[13]. point of the polymer chain, i.ez—z+L/2. Introducing the
variable 2=2z/r,, we obtain the mean-field equation, Eq.
(10), in the form

e Yocoshz/ry),  (21)

I1l. MEAN-FIELD SOLUTION FOR DIFFERENT MODEL
POTENTIALS dzy(t)
In order to get a feel for the solutions of the mean-field de2
equation for the shape of the self-attracting polymer chain,
Eq. (l(.))’ we SOIVG.'t. for three_ different model |nte_ract|on which is equivalent to the modified Mathieu equation with
potentials,V(r): A finite potential well, an exponential po- _ 3 -
. . . X . standard parametersa=—8Vyrg/K, and q=-4V,/
tential, and a counterion correlation potential. Approximate 3 ) . .
Kcrgexd —(L/rg)/2] [18]. There is only one solution of this

analytical solutions can be obtained only for the first two . ) S . .
equation which satisfies the requirements of being both sym-

potentials. S o . S
In the case of a finite potential well metric with respect to the origin of axis, and finite in the
’ limit g—0:

—[a—2qcosh2t)]y(t)=0, (22

_VO if r<r0, n=+o
V70 otherwise, 0 YO~ X cRKand2 acosinl, (23

which leads to wheres is the solution of the Hill equatiofil9],
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T o 1.6 T T T T
sinz(is) =—A(0)sinr? 5@ : (24) r=0.4 = well
141 TToexe
— corr
with K,,(x) denoting the modified Bessel function, at@0) \\\ ‘ |
the Hill determinant fors=0 [19]. This equation can be S N Urstatle region
solved explicitly only in a limit that would correspond to /& e
L/ro>1. In this limit A(0)=1 wherefrom E Stable region
T T s o I I | : | =
sinz(Es):—sinl"F 5@ =s=1a. (25) = Ll f=0-2
To the lowest order, i.e., far=0, the solution of the Schro 121 Unstable egion
dinger equation reads e
1.0 —
y(t)~K, z(2Vq cosht). (26) Stabe egion
0.8 ! t y . - - - -
The boundary condition at= £ L/ry/2 thus comes out as ! z : ¢ L/Sm ° v e

\ﬁ(l%—e_(”ro)/z)} ~0 27) FIG. 2. Critical strength of the interaction potential, in terms of
2 - the dimensionles parameteV /V,) (L/ro)?, with Vo= Kclrg, as a
function of the dimensionless length of the rbdr, at different
and has to be determined fa=8|V,|r3/K.. Only the values of the screening parametgrfor the three models of attrac-
asymptotic form of the solution can be obtained explicitly, astive potentials: Finite potential well, E¢L7), exponential potential,

KW‘E

follows: Eq. (20), and the general correlation potential, E29). The bend-
ing rigidities have been chosen in such a way that at largg the
Vor.l2 2 r3 curves coincide.
oo | 1+am® 24, (29 _ _ _
Ke 2 3 properties of the chain. To include these effects at the most

primitive level, we now evaluate the partition function of the

not unlike the result for the finite potential well. The details chain if the mesoscopic Hamiltonian is expanded up to sec-
of the interaction potential thus, at least in the asymptoticond order in the fluctuations around a straight rodlike con-
limit, do not appear to matter much. Clearly, the asymptoticigyration. In analogy with quantum mechanics, Odijk]
form derived by Mannind13] again provides a reasonable has dubbed this type of approach the “semiclassical” theory
description of the point of instability, the lowest order devia- of puckling. The fluctuations are treated very approximately
tion from it varying as {o/L)°. in this scheme and as soon as they become large enough, the

The last form of the fluctuation potential that we consideryhole approximation breaks down. This happens, of course,
is the asymptotic form of the effective pairwise additive formyight at the instability. Still we will argue that this generali-
of the counterion correlation potential derived in Refs.zation of the mean-field formalism will give us trends con-

[3,14): cerning the conformational properties of the chain close to
“tlrg\ 2 o the buckling transition.
V(r)=—Vya? ) =—|vo| —. (29) In order to treat the effect of the fluctuations on the sta-
r r bility properties of the self-interacting polymer chain, we

first of all write down the free energy of the chain subject to

There is no simple analytical result that one can derive forsmall conformational fluctuations. An expansion is per-

this interaction potential even in the asymptotic limit. Theformed on the basis of E3), in the limit of p’ (2)<1, with
numerical solution is, however, revealing enough, see Fig. 2y o (oo it ' '
Apparently the finite range of the potential has even less
effect on the stability limit than in the previous two cases for 1 L 1L (L
equalr,. The stability limit is extremely well approximated F~ EKCJ dz(p’(2))*+ EJ J’ dzdZV(|z—2'|)
by the WKB ansatz Eq.15) which suggests that the critical 0 070
strength of the attractive potential inducing buckling should 1 (L (L
be inversely proportional to the length of the chain squared.  + Zf j dzdZ[(p'(2)*+(p'(2)*V(I1z—Z'|) + - --

Comparing the three model potentials one sees that the 070
effect of the finite range of the potential is most pronounced (30
for the exponential potential and least pronounced for the ) i ,
correlation form, Eq(29). At the mean-field level, the de- NS harmonic form of the free energy we now write with a
tailed form of the attractive part of the intrachain potential is"eW independent variabjef (z) =w(2) in the form
thus of minor importance for a long enough chain. L

fo dz(w'(2))?

1
f(W(Z),W'(Z),Z)~]:O+§KC

IV. FLUCTUATIONS: “SEMICLASSICAL THEORY”

The mean-field theory analyzed above completely ignores n dezQZ(z)wz(z) (31)
the effects of thermal fluctuations on the conformational 0 '
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with tor. Assuming free boundary conditiopé(z=0,L)=w’'(z
100 L =0,L)=0, one obtains the curvature density distribution
fo:ij J dzdZV(|z—2'|) (32) function as follows:
0JO
, BK.L
and P[w'(z)]~exp — ——[cot®(02)
2 -1 -
02 - | ozviiz-2) @3 +ootd(z ]2 DW ()], (39

The propagator for a harmonic action given by the Hamil-the normalization constant is irrelevant, as we will be only
tonian, Eq.(31), can be evaluated analytical[20] and is  jnhterested in the average @i’ (z))2. Evaluating now the

determined by quantities characterizing the “classical” s0-joc4| curvature fluctuations at the midpoint of the polymer
lution, as calculated via the Euler-Lagrange equation that ongnain z=1 /2. we are left with

can derive from the free energgr “Lagrangian”), Eq.(31).
In terms of the local curvaturey’ (z), the propagator can be
derived in the form f dyy?P[y(z=L/2)]

2 2\ _
KWw'(z),z,w’'(z'),z") (W (L12))%)=

fdyP[y(z=L/2)]
:f ...fDW(Z)e*ﬁf(W’(Z)VW’(Z’):z,Z’)

1 1 t
=—————tan , (39
G?BFg(W' (2),W'(2');2,2") BKLp?(L/2) r( Lf 0 2p2(t>)
ow’'(z)ow'(z")

=det1’2(
where(- - -) indicates thermal averaging. The effect of the
Xexg — BF4W'(2),w'(2');2,2)], (34)  fluctuations in the harmonic limit can novv2 be assessed as
follows. Clearly, at the instability (w'(L/2))) should be-
where Fy(W'(2),w'(z');z,2') is the “classical” contribu- come large. Just how large is difficult to see from E2p)
tion to the free energy, Eq31), evaluated for thew(z) since the derivation is valid only in the limit of small fluc-
which is a solution of the Euler-Lagrange equation, @€).  tuations. Nevertheless, following Odijk’s reasoniid], we

The propagator can now be written in closed fdi2d]: claim that the instability sets in as soon as the relative fluc-
tuations in the midpoint become larger th&w(1), i.e.,
KWw(z),z;w(z'),z") (W' (L/2))%)p?(LI2)=co=0O(1). It is difficult to say more
_ than that without actually solving the fundamental equation,
[ sin®(z,2") _ BK¢cosd(z,2') Eq. (36). Close to the instability point, the lowest order con-
B p(2)p(Z') ex 2 sind®(z,2') tribution to the formal solution of the above equation reads
XL[p2(2)(W' (2))%+pX(2 ) (W' (2))?] n
Do) PALI2) (W' (L12))?)~ : :
sind(z,z") 0 40

where v(z) =p(2)sin®(zz') and v,(z)=p(z)cosd(z2') o o ) )
are just two linearly independent solutions of Ef0). The  Within the WKB approximation this result has a very inter-
function p(z) in Eq. (35) is a solution of the Ermakov- €sting interpretation. Here the above instability limit can be

Pinney equatiofi22], written in the following form, with explicit dependence on
the interaction potential
1
p"(2)+Q*2)p(z2)— —— =0, (36) L L
p*(2) J dz U dz’,BV(|z—z’|)‘
0 0

while ®(z,z') can be derived in the form

~aBK,

1
1_,8KCL p2(|_/2)<(w’(L/2))2>)' “

1(z dt
(IJ(z,z’)zEf (37)

2 p?(t '
s If we compare this result with the pure mean-field result, Eq.
All this follows directly from Eg.(13). All other derived (15), which excludes any effect of fluctuations, the instability
guantities can now be obtained with the help of this localpoint is obviously reached when the strength of the potential
curvature propagator. reaches the same value as one finds in the mean-field case,
The density distribution functioR[w’(z)] for the curva-  except now the value of the elastic constant is renormalized
ture is obtained in a straight forward way from the propaga-according to
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where 8=1/kgT. The functionals function guarantees that
5 - > (420  the integral involves only such configurations that satisfy the
p (LI2)((w'(L/2))%) condition of “inextensibility.”

) o ) ) ) Two problems complicate the evaluation of the partition
This renormalization of the elastic constant is obviously fluc-,nction. The first is imposed by the functionalfunction

tuational and is thus linear in temperature. Clearly, the abovgng the constraint of “inextensibility” which requires us to
reasoning is not quantitatively valid since we are stretching,cjude in the sum over polymer conformatiansonly those

the harmonic theory into aregime where it is not valid. H'ow-fOr which the tangent vectots= d,r lie on a unit sphere. The
ever, one can hope that it bears out the correct tendencies fggconq problem which complicates the evaluation of the par-
the behavior of this system. tition function is the fact that, rather than being a simple
_ It thus appears that the “semiclassical” theory of buck- 4 adratic(Gaussianform, the intermonomer interaction po-
ling would lead to the same type of instability as the meansgntig| is, in realistic situations, a complicated, nonlocal func-
field theo_ry, but with theT persistence length or, equivalently4jon A systematic way of addressing these problems takes
the elastic modulus taking on a smaller value than the bardeantage of a “Lagrange multiplier” technique. Thus, for
value. In other words, thermal fluctuations appear to renoringtance, one can enforce the constraint of “inextensibility,”
malize the persistence length to a smaller value than the batene introduces an auxiliary field or “Lagrange multiplier”

value. This is exactly the opposite of what happens in the;\(s) and adds to the Hamiltonian the term
case of purely repulsive segment-segment interacfid8k

How much of this scenario remains valid in the case 1
where fluctuations cannot be dealt with as a small perturba- 5H1=§f ds\(s)[ (941 (8))*—1]. (45)
tion, but are essential to the behavior of the system? The
answer to this question presupposes the complete solution of Similarly, in order to avoid the complicating nonlocal
the statistical mechanical problem of the self-interacting stiffterm in the pair potential, one can introduce the independent
polymer chain. This solution can be obtained only in an apfield B=B(s,s’), and make the replacemen¥[(r(s)

BK— BK—2

proximate form such as we derive below. —1(s"))?]—V(B). In order to be able to make this replace-
ment in a systematic way, one must somehow enforce the
V. FLUCTUATIONS: SYSTEMATIC 1/ d EXPANSION constraint(r(s)—r(s’))>=B. One can do that via yet an-

other auxillary field (“Lagrange multiplier”) [25,26 and

In order to treat the fluctuations on an appropriate levelne is thus led to introduce another term in the Hamiltonian,
one has to go beyond the simple-minded approximate har-

monic or “semiclassical” theory we described above. In this 1 )
section we will briefly outline one approach that goes beyond 5H2:§f dsdsg(s,s")[(r(s)—r(s"))"—B(s,s")].
the semiclassical theory. We wish, in particular, to introduce (46)
a program which allows for a reasonably straightforward,
approximate calculation of the partition function and freeGiven these modifications, the evaluation of the partition
energy for a semiflexible polymer whose monomers interacfunction now involves a much easier, unconstrained summa-
via a pair potential. The formalism we develop has alreadytion over polymer conformations The price one has to pay
been applied to describe the conformations and thermdbr this simplification is that, in addition to summing over
properties of other intrinsically flexible materials, including one must now sum ovex, B, andg as well:
membranes. Thus, the formalism has been used to predict the
conformational behavior of fluid membrang4] and teth-
ered manifolds, with[25,26 and without[27] long-range
monomer interactions. In a recent stUy@g] of semiflexible
polymers with noninteracting monomers/€£0) an ap-
proach, similar to the one introduced here, was used.

For the chains under considerations, we wish to reintro
duce the general parametrizatiofs) and we wish explicitly
to enforce the constraint of “inextensibilitydsr (S) - dsf (S)
=1. The form of the Hamiltonian we shall prefer to use is

then, cf. Eq.(2),
B f g K[ d%r
") 97 e
(43) ing Ho=H+ SHy+ 6H,, i.e., SHy[r]/or[p=0, then one
finds, after integration, an effective Hamiltonian
The partition, itself, is the path integral over polymer confor-
mations weighted by the Boltzmann weight, expH),

2= [ DIr(9) 1IN () IDLg(5.5)1D[B(s,5')]
Xexd — B(H+ 6H,+ SHy) . (47)

In the expression for the partition function, E@7), it is
understood that the summation owerand g are over con-
tours that begin at-ic and end at+io.

It is easy to see that the introduction of “Lagrange mul-
tipliers” provides us with an expression for the partition
function which is quadratic im and thereforeexactly solv-

2 able as for the integration over polymer conformations. If
I Ef f dsd€V(|r(s)—r(s")]). one fixes\llf={)\.,B,g} and e_zxpands about a particul.ar. rgfer-
2 ence configuratiom,=r, which has the property of minimiz-

d
Helrog, V]=Hy[rg,V]+ kBTETr

Z=f D[r(s)]]_S[ 83041 (S)- dsr (s)— 1]exp(— BH), ><In[5(s—s’)(KCa‘s"—as)\as)+29c(s,s’)],
(44 (48
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where detail. By functionally minimizing with respect ta, B(s
—s'), andg(s—s’), one finds after some manipulations
1
gc(s,s’)=g(s,s’)—§5(s—s’)f ds’[g(s,s") +9(s",s")], _ 9o 9o dg q2
(49 ds 95 P1) 27 Kgt+ +Na%+2g0(q)

52
and d is the number of components of the vectoror, )
equivalently, the dimension of embedding space. If one ig-
nores end effectsby considering a closed polymer, or by gc(q)=f df1-coqqs)]V'[B(s)], (53
enforcing periodic boundary conditions, $apne can as-
sume that\ is a constant, and thaiB(s,s’)=B(s B(s—5')=(ro(S)—ro(s'))?

-s'), g(s,s')=g(s—s’'). It is then possible to perform

the diagonalization in terms of Fourier modes, so that dg 1-codq(s—s')]
+2dkBTJ' — , (54

27 Kq*+Ng%+29(q)

Tr|n(--.)—>fdsJ2d—:|n(...),

where V'(z)=4d,V. These equations are special cases of
more general equations obtained by Le Dou§2§] and by

Ked2—Nd2—Kg*+1g?, (50)  Palmeri and Guittef26] in their analysis of elastic manifolds
with long-range monomer interactions. Of these equations,
9.(s,8")—g(q)—g(g=0), the first, Eq. (52), guarantees that the constraint

dsr(8)-dsr(s)=1 is satisfied globally, and the third equa-

whereg(q) is the Fourier transform aj(s—s'). The calcu-  tion, Eq. (54), takes care of the constraik(s)—r(s’))?
lation of H [, ¥] is then, obviously, straightforward. =B(s,s’). Finally, the second equation, E§3), determines

What remains in the calculation of the partition function @n effective “self-energy” of the polymer. This self-energy
and the free energy, is the more difficult integrations over May be expanded iteven powers ofq, and the expansion
B, andg. These integrations can not be performed exactly irgoefﬂments determine contributions to the renorma'llzed elas-
the general case. If, howeveat—c, the integrals are com- [C constants, as may be seen from the expression for the
pletely dominated by the contributions from the saddle point; Propagator” K~*(q)=1[Kcq*+xq+2gc(q)]. Roughly
obtained by minimizing with respect to, B, andg. In this ~ SPeaking, the expansion coefficients tell how tr@nlocal
limit, the exactexpression for the free energy of the refer- intéractions modify the parameters involved irogal de-

ence configuration, is therefore scription of the polymer. In particular’ (B(s)), will, in part,
determine a contribution to the total, renormalized bending

d rigidity, as may be seen by analyzing E&3) (see further
Halro, W1+keT5Tr IN[Kd2—Na? below).
If, in addition to minimizing with respect t&, one mini-

Flrol=Fo+

mizes with respect tg, so as to determine the best choice of
+29c(S.S')]) : (1)  configuration in the class of configurations defined by the
SP equationr o= {se, one finds, in agreement with Ref&5,26,
where Fy is an unimportant constant. SP implies that the MR)Z@SK(Q)M:OZO or (=0, (55)

expression is evaluated at the saddle point and the TrIn part

can be evaluated with the help of E(0). For finited,  wherex(® is a renormalized “Lagrangian multiplier.” If
corrections to the saddle point estimate will be of oroled) #0, the first equation in Eq55) expresses that a straight
and may be calculated viasystematicl/d expansior[12].  semiflexible polymer is in a stress-free configuratidgrthe

We shall not do so, being content with the calculation by thepolymer were subjected to external stress, the applied stress
saddle point method. It is possible to show that this approxiand (R would have to balangef, on the other hand{
mation is equivalent to relaxing the local constraints=0, typical conformations of the polymer will deviate sig-
agr(s)-dsr(s)=1 and(r(s)—r(s'))>=B(s,s'), and replac- nificantly from the straight configuration, and we may expect
ing them by the global constrain{g.r(s)-dsr(s))=1, and  strongly wrinkled configurations to dominate, or the polymer
((r(s)—r(s"))*)=B(s,s") [28,29. to be in a collapsed statsee below.

We can now carry out a more quantitative discussion of It is interesting first to analyze the possibility of having a
the properties of semiflexible polymers with pairwise mono-truly straight configuration, witht# 0, as the equilibrium
mer interactions, which are here taken to be attractiveconfiguration of the polymer. Such a straight configuration
Within the formalism described above, such a discussiortan exist atT=0, even if the interactions are attractive.
can, unfortunately, only be performed for simple choices ofHowever, at nonzero temperatures we expect that only con-
reference configurationg. Here we shall confine ourselves figurational entropy, which is expected to favor random-walk
to the choicery={se, wheree is a one-dimensional unit behavior, can prevent the polymer from collapsing and the
vector, and! is a “stretching factor’[30], whose nature will — polymer will, irrespective of whether it collapses or not, have
be described below. equilibrium conformations that deviate significantly from a

It turns out that very useful information is contained in therod configuration. Indeed, one finds that ¢ 0, the inte-
saddle point equations and we shall analyze these in songral in Eq.(52) is disturbed by infrared divergences which
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can only be removed in the special cd§g=. This result 1.0 ' '
must be seen as indicating that the straight-rod configuration
is unstable. As a consequence, in the thermodynamic limit, a 08 L
phase characterized by a straight average configurétien ’
ordered phageexists only in the limitT=0 (or K,=«) and
is otherwise destroyed by thermal fluctuations. 06 |
Further analysis of the conformational properties of the < .
chain forT>0 must rely on a more detailed analysis of the <
saddle point equations, Eq&2)—(55). What can we expect - -
from such an analysis? As we have already indicated, at |t .77
finite temperatures, we expect that polymers whose mono- ool 7
mers attract have to compromise between direct interactions /
which, at short scales, favor bending and, at larger scales,
favor collapse of the chain in order for monomers to be 00,5 05 10 15
close, and the different effects which counteract these pro- Wlon| /e

cesses, namely, the initial bending rigidity and conforma-
tional entropy. If this picture is correct then we must, in F|G. 3. The solution of Eq(56), the relation between the
agreement with the semiclassical analysis of Sec. IV, experength of segmental attraction and the change in apparent bending
to find the effective bending rigidity, and the persistencemodulus, forxl,=10. The strength of the interactiofv,| is mea-
length, to decrease significantly, and we must expect theured in units okgT, and the renormalized bending rigidit{® is
theory to signal that collapse of the chain is favorable formeasured in units of the “bare” persistence length Observe that
strong enough interactions between monomers. The quanﬂig‘)/lp depends linearly offvo|/ksT for small values ofvo|/KgT.
tative analysis confirms these intuitive considerations. We here exists &vo.| where there is no longer a physically acceptable
focus on the change of the bending rigidity, which may besolution forl (¥/1,(|vo|), implying a loss of stability of the coiled
obtained by expansion of E¢J), configuration of the polyelectrolyte chain.

% st
5Kc=—2f ds;;V'(B). (56) dkgT
— : B(s)= =
2K (P

[£%s+E(e ¥E-1)], (59)

Knowing 6K., we can calculate the total, renormalized ri-
gidity asK(P =K + oK.

It is instructive first to consider the situation neb+0
[31]. At T=0 we may assumé=1 and for the interaction
potentialV(r) = — (|vo|/r?)exp(— «r), we find,

—|Vvol
5KC=Z(T

whereé= \/KC( 9/\® is a crossover length which, in the case
analyzed here, reduces o= (2/d)I{?. We see that as long
as there exists a self-consistent solution #t., the corre-
lation function B(s—s')={((r(s)—r(s’))?) behaves as
((r(s)—r(s")?(&NV)|s—s'|?=|s—s'|? for small values
of s—¢', reflecting that the polymer is “Zstraight” o(r;)short
It is tempting to suggest that this significant reduction in thesic?rsforlegg:g S,S esezg:\gﬁgg(srgnég;)-\)/v;ﬁ((Il;ig:/ior). s
rigidity could signal that the straight rodlike configuration A self-consistent solution fofK ., may be obtained from
could become unstable evenat-0. As we saw in the pre- g (56 after inserting the solution to the saddle point equa-
vious .s'ectlons(see In partlcglar.Secs.. .” and Jlsuch an tions Eq@s.(58) and (59). One derives an integral equation
instability, namely, the buckling instability, does appear.  h4qe evaluation, is complicated, for instance, by the cross-
Now,.a.t fjnite temperature'§>p (and f?nite values.of the over between the rigid-rod regime and the random-walk re-
“bare” rigidity K), theT=0 estimate will not describe the gime “|n order to obtain the full solution to the problem, a
conformational properties of the chain very well. We mustymerical study of the integral equation must be carried out.
now takef=0, while enforcing the constraint of inextensi- |t one js satisfied with qualitative and asymptotic results, one

bility by requiring A" to assume a nonzero value. In the o5, analyze the integral using the method of steepest de-
following we shall assume that in analyzigg(q), it is suf-  gcent.

ficient to retain terms up to and including the fourth order  The gutcome of numerical and qualitative analysis is the
term in the Taylor expansion @ in powers ofq. This IS fo|lowing. If one fixesk andl,, and determines numerically
expected to be a valid as_sumptlon a32 Iong\aangj K. are hOW|(R)/|p (or 8K./K,) depends ofiv,| one finds results of
not both small. We then find.=(6\)q°+ (6K.)q", where Whichpthe curve in Fig. 3 is an example.

SO\ is the contribution to the “Lagrange multiplier” from The curve shows that for large values I(,‘ﬁ)/lp (small

nonlocal interactions, and(® =\ + S\. With this assump- : -
tion being made, it is easy to solve E¢52) and(54), with valges C()IJ)ﬁKC') .and small values o¥o, a solut!on' exists for
which 15V/1, will decrease[| K¢ (vo)/K.| will increasd
the result . p P R)
with |vg|, as it should. For values cbf) /1, large compared
with «l,, (I =1,)/1,|=|5K /K| is found to vary lin-
(58)  early with |v|. This same result is found by a steepest de-
scent analysis, and agrees with the 0 result displayed in

fxds ks L1)= 1 V0| 5
128 TSt =—g = (87)

2
CNLLAES
2 K‘(:)
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T VI. DISCUSSION

In the above analysis we explored the connection between
buckling of self-interacting elastic rods and polymer collapse
< buckled becat_Jse of a}t.trac.tive segment-segment interactions_. This

collapsed b.u.cklmg transition is e_ffectlvely the same as an Euler insta-
buckling bility under externally imposed compression for¢&e, 16.
transition We derived an elastic equilibrium equation whose solutions
collapse determine the state of the elastic rod in the presence of at-
transition tractive segment-segment interactions. In effect, the buckled
state corresponds to the bound state solutions of a
Schralinger-like equation to which the elastic equilibrium
—Zrod equation is closely related. Except for extremely simple in-
teraction potentials this equation, of course, cannot be solved

coiled analytically. Nevertheless we find, that the WKB solution
quite accurately describes the qualitative as well as some of
//// /% the quantitative aspects of the numerical solution, especially
iy with short range potentials.
Qualitatively, the introduction of thermal fluctuations at
the harmonic level, does not change the picture of the buck-
FIG. 4. The phase diagram for a semiflexible polymer whoseling transition. It nevertheless points to the conclusion that
dimensionless bending rigidity iK./K,, whereKo=kgT/x, and  conformational fluctuations will renormalize the value of the
whose monomers interact via a dimensionless attractive potential gfersistence length. This effect is quite well known, if not
strength|v|/kgT. Buckling of a rod may take place fovo|/kgT,  understood in all its details, in the case of repulsive poten-
greater than some value, when the bending rigidity is effectivelytials[23, 31-33 where the interactions tend to stiffen up the
infinite. A collapse transition occurs at a unige(K.)|/kgT for  chain. The attractive potential, not surprisingly, acts in the
each finite value oK /K. reverse direction, thus diminishing the persistence length.
The harmonic approximation, valid strictly only in the limit

Eq. (57). When |v,| is increased further, the decrease in of smal_l fluctuations, makes t_he_:_buckling trans_ition, where
|EOR)/|p (increase in|sK./K¢|) speeds up. Eventually, for fluctuations may become prohibitively large, difficult to ana-
some|vq,|, the rate of change df}R)”p and of | 6K /K| is Iy;e in quanuta’qve terms. We never_theless argue that it is
“predicted” to become infinitely fast. If one then increases still there, but d|sp]ac<a_d towards a_dn‘ferent point in the pa-
V| beyond|ve,|, one finds no solution fosK /K, which rameter space. This displacement is predicted to be linear in

-1
satisfies the demand thb#K /K| increases a$v,|. This (BKe) .

result is in good agreement with the results of a formal steep- For unconstrained fluctuations it is difficult to put fprth a
est descent analysis which, fet,—0, predicts that cor_nprehenswe _theory. We use the systema_tioexpar}smn, .
P which has previously been applied in studies of higher di-

mensional self-interacting manifold25,26] as a vehicle to

[vol/ksT

O KO/KC

X build a more general theory of the self-attracting polymer
5Kc:VO—;XO(1)i (60) chain._ On the Ieve_l of_approximation provided _by the sys-
Kg ))5 tematic 14 expansion it appears that buckling in the strict

sense of this word is preserved only B0 or, equiva-

lently, for infinitely stiff chains,K.—o. At any finite tem-
with a nontrivial relation betweerdK. and vq and the perature, or finite persistence length, the buckling transition
screening length = 1/x. Physically, the latter result is not is turned into a collapse of the same type as already exten-
acceptable and it must be seen as an indication that theively investigated in the case of self-attracting ideally flex-
theory breaks down. In fact, we believe that the solufon ible polymers[7, 34].
=0 with correlations well described by a random walk  This scenario of course depends on the level of approxi-
model will now have to be replaced by a solution charactermation provided by the @/ expansion in thed—oc limit.
izing the collapsed state. If our analysis is correct, we carJsually the variational approach, being nonperturbative,
therefore conclude that if we investigate the polymer at finitedoes not fare badly; we have confidence that the salient fea-
temperaturegfinite “bare” bending rigidity), we will find  tures of the phase diagram for the self-interacting stiff poly-
that not only will it wish to bend, if the interactions between mer chain are not far off from the picture put fourth here.
monomers are strong enough, it will also prefer to collapseThe weakest link in our story would appear to be the ansatz
We illustrate these predictions of the conformational behavsy= {se. It obviously cannot describe the more realistic tor-
ior in the phase diagram, Fig. 4. The interesting feature iroidal shapes of the, e.g., DNA aggregates. But it should cer-
this phase diagram is the line of collapse transitions whichainly work fine as long as we are not interested in the de-
exist for finite values oK. and terminates at the buckling tailed structure of the collapsed phase but only in the phase
instability point atk.=o. Based on our formal steepest de- boundary.
scent calculation, we predict that for large enough At present detailed predictions for experiments are unre-
UK., Vv(LK)~ (1K) S alistic. At least the orientation dependent part of the interac-
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tion should be included in order to describe the nematic naef DNA, but still, the incipient effects are seen in the smaller
ture [7] of the condensed state. One thing, however, weeffective persistence length. Qualitatively this is exactly
consider to be a robust result of our calculations: counterionvhat one expects from our theory.

correlation attractions diminish the persistence length. The Also the present form of the theory seems to be well
opposite effect of the stiffening of the chain with repulsive suited to describe the effects of the correlation attractions on
intersegment interactions is of course well known, thoughne elastic extension of the chain. The interplay between col-
perhaps less well understof@3,32,33. The effect alluded  |apse and stretching seems to be well within the reach of the

to here is not just the OSF formula with the sign reversed. Ihresent formalism and will be pursued in all the details in the
has a completely different screening length and magnitude,tyre [36].

dependence than the OSF result.

The linearized version of this effect is embodied in Fig. 3.
Recent experiments on stretched DNA in the presence of
variable amount of Co(NE 4" [35] clearly show that the ACKNOWLEDGMENTS
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