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Buckling, fluctuations, and collapse in semiflexible polyelectrolytes
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We present a systematic statistical mechanical analysis of the conformational properties of a stiff polyelec-
trolyte chain with intrachain attractions that are due to counterion correlations. We show that the mean-field
solution corresponds to an Euler-like buckling instability. The effect of the conformational fluctuations on the
buckling instability is investigated, first, qualitatively, within the harmonic~‘‘semiclassical’’! theory, then,
systematically, within a 1/d expansion, whered denotes the dimension of embedding space. Within the
‘‘semiclassical’’ approximation, we predict that the effect of fluctuations is to renormalize the effective per-
sistence length to smaller values, but not to change the nature of the mean-field~i.e., buckling! behavior. Based
on the 1/d expansion we are, however, led to conclude that thermal fluctuations are responsible for a change of
the buckling behavior which is turned into a polymer collapse. A phase diagram is constructed in which a
sequence of collapse transitions terminates at a buckling instability that occurs at a place that varies with the
magnitude of the bare persistence length of the polymer chain, as well as with the strength and range of the
attractive potential.@S1063-651X~99!04708-X#

PACS number~s!: 61.25.Hq, 61.20.Qg, 87.15.Nn
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I. INTRODUCTION

Recently, the phenomenon of DNA condensation h
been subject to renewed interest@1,2#. It appears that the
attractive forces generated by the correlated fluctuation
Ref. @3# or positions of Ref.@4# condensed counterions pla
an essential role in bringing about a sudden aggregatio
the DNA molecule~s!. These interactions are quite intrica
since they can be described by a pairwise additive poten
only at very low concentrations of DNA@3,5#. For dense
DNA mesophases, many-body effects appear to be esse
@6# and any theory of the DNA condensed state ought to
take them into account. In comparison, the description of
solution phase, where pairwise additive interactions m
sense, promises to be much simpler and more easily wi
reach.

Our goal here is to assess some of the fundamental
sequences that attractive electrostatic correlation forces
on the thermodynamic properties of stiff, charged polyme
In certain respects this problem has already received s
attention in the framework of liquid crystalline ordering
polyelectrolye solutions@7,8#. Here we find it useful to focus
entirely on single-chain properties. A related approach w
introduced recently by Golestanianet al. @9#.

We start with the mean field theory of a stiff polyelectr
lyte chain, where thermal fluctuations are ignored; we fi
that counterion correlation attractions should induce
Euler-like buckling instability of the chain@10#. Formally,
we show that at zero temperature, the buckling instability
associated with nontrivial solutions of a Schro¨dinger-like

*Author to whom correspondence should be addressed. Electr
address: rudi@helix.nih.gov
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equation which is solved for different models of interacti
potentials. We determine howVcr , the critical strength of the
potential at which buckling sets in, depends on the length
the polyelectrolyte. Below the instability, the chain
straight whereas above the instability point, the chain bu
les from intrachain attractions.

In steps, we then treat the effect of the fluctuations on t
mean-field picture, first, within a harmonic theory that Od
@11#, in a related context, has dubbed the ‘‘semiclassic
picture. This picture is strictly valid only when fluctuatio
effects are quantitatively small. At this level, there are in
cations that the buckling instability is preserved but that th
mal fluctuations tend to renormalize the value of the per
tence length of the chain, so as to make itsmaller than the
bare value. The harmonic approach breaks down close to
buckling instability where conformational fluctuations b
come large. The predictions can therefore only be conside
as plausible trends.

The inclusion of thermal fluctuations of arbitrary streng
however, does not conform to the mean-field or the ‘‘sem
classical’’ picture. We propose an approach that can desc
properly the thermodynamic properties of the chain for a
set of parameters. This approach involves a systematicd
expansion@12# of the partition function, whered denotes the
dimension of embedding space. We prove that, in gene
thermal fluctuations completely destroy the~mean-field or
‘‘semiclassical’’! buckling instability and convert it into a
polymer collapse@7#. By varying the bare persistence lengt
and the strength and range of the attractive potential,
determine a complete phase diagram. We find that true bu
ling occurs only at zero temperature~or infinite persistence
length! and that thermal fluctuations at any finite temperat
turn buckling into collapse. We do not address the nature
the collapsed state~as was done in, e.g., Ref.@8#!; we would
ic
1956 © 1999 The American Physical Society
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PRE 60 1957BUCKLING, FLUCTUATIONS, AND COLLAPSE IN . . .
have to include consistently in the theory many-body, n
pairwise additive effects in the electrostatic correlation
tractions. This, however, is still too difficult.

As with many concepts in polyelectrolyte theory, the id
that an Euler-like elastic buckling instability could lie at th
core of the polymer collapse problem has been put forth
Manning in relation to DNA condensation@13#. Manning’s
calculation, however, does not take into account explic
the attractive part of the interaction potential along the po
electrolyte molecule. The same is true for the recent anal
set forth by Odijk @11#. Here we shift the perspective b
explicitly considering the contribution of attractive forces b
tween polyelectrolyte segments to the onset of a buck
instability. In addition, we show how thermal fluctuation
may transform the buckling behavior into a polymer c
lapse.

The exact form of the counterion fluctuation potential
the regime where pairwise additivity makes sense is no
serious concern here. Our theory is valid for any form. W
indicate that generally by doing some of the calculations
different model forms of the pair potential. However, gene
arguments based on the analysis of the asymptotic form
the counterion fluctuation forces indicate quite stron
@3,14# that it is not unreasonable to expect that the effect
pair interaction potentialV(r ) is of the generic formV(r )
52uv0u(1/r )2e22kr , where r is the monomer-monome
separation,v0 sets the energy scale for the interaction, andk
an inverse screening length. We often invoke this form bu
is not essential for general conclusions.

The organization of this paper is as follows. In Sec. II w
present the mesoscopic free energy of the chain and de
the elastic equilibrium~mean-field! equation for its shape. In
Sec. III we investigate numerically the nature of this ins
bility for different model interaction potentials. Next we tur
to the effect of the fluctuations. The harmonic~‘‘semiclassi-
cal’’ ! theory is considered in Sec. IV. The analysis based
a systematic 1/d expansion of the partition function, is pre
sented in Sec. V. Finally, in Sec. VI we discuss our resu
and address the question of possible experimental rami
tions of our results.

II. MEAN-FIELD THEORY

The idea of an interaction-induced buckling instability
really quite intuitive; see Fig. 1. At the point where the ela
tic energy of bending can no longer compensate for
change of the interaction energy due to diminished sep
tions between the interacting segments of the polymer ch
the polymer will buckle. Clearly, this buckling depends
the persistence length of the polymer as well as on
‘‘strength’’ of the attractive interactions between its se
ments.

The starting point for a mean-field description of th
buckling instability is the identification of a mesoscopic fr
energy of the self-interacting persistent polymer. We sugg
here that this free energy may be written as a sum of c
figurational elastic energy and pair-interaction energy for
the monomers:
-
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F5
Kc

2 E
0

Lds

R2
1

1

2E0

LE
0

L

dsds8V„ur ~s!2r ~s8!u…

5
Kc

2 E
0

L

dsS ]2r

]s2D 2

1
1

2E0

LE
0

L

dsds8V„ur ~s!2r ~s8!u…,

~1!

wherer (s) denotes a general parametrization of the polym
chain,s the contour length, andur (s)2r (s8)u is the distance
in embedding space between two monomers ats ands8. Kc
is the elastic modulus, which is related to the bare per
tence lengthl p via Kc /kBT5 l p . Finally, V„ur (s)2r (s8)u…
denotes the monomer-monomer interaction potential
sumed to be purely attractive~unless indicated otherwise!. In
what follows we shall remain within the framework of th
Euler elastic rod theory, ignoring possible nonplanar co
figurations pertinent to the Kirchhoffian description@15#.

Since we limit ourselves to considering inextensib
chains, we ought, in principle, to take into account the co
straint]sr (s)•]sr (s)51 for any pointr (s) along the chain.
For weak undulations, or, in the limit of validity of the mea
field approximation, this constraint can be safely ignor
@11#. In general, however, one has to deal with it approp
ately; see Sec. V.

In the mean-field approximation we determine a typic
configuration of the polymer by functionally minimizing th
free energy with respect tor (s). The result of such a varia
tion is

Kc

]4r ~s!

]s4
1E ds8F„ur ~s!2r ~s8!u…50, ~2!

whereF„ur (s)2r (s8)u…52]V/]r (s) is the local force den-
sity. This equation determines the typical polymer config
ration subject to appropriate boundary conditions. It is e
to show that if we consider a polymer with noninteracti
monomers subject to the boundary conditions that the e
of the polymer do not bend, the solution to the mean-fi
equation, Eq.~2!, corresponds to a straight rodlike config
ration. If we imagine that the attractive potential betwe

FIG. 1. Schematic representation of buckling. In a buck
chain, the effective separation between segments becomes sm
which lowers the free energy of the chain if the interactions
tween segments are attractive. This decrease in the free en
works against the increased bending energy, thus leading to a
stability.
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1958 PRE 60HANSEN, SVENŠEK, PARSEGIAN, AND PODGORNIK
monomers is weak, then deformations away from the rod
configuration must be small. Under such circumstances,
useful to change the parametrization of the polymer and
describe the polymer, and solve the mean-field equation,
coordinate system which is well suited to describe small
formations away from the straight configuration.

Specifically, for small deviations from a straight config
ration, the polymer chain can be parametrized asr (s)
5„z,r(z)…, wherez is the direction of the axis of the mol
ecule anduru is the radial distance from that axis. In th
parametrization one hasds5dzA11(dr(z)/dz)2 and

1

R
5

d2r~z!/dz2

@11~dr~z!/dz!2#3/2
.

With r8(z)5dr(z)/dz, the free energy can be written a
follows:

F5E
0

L

dzL@r9~z!,r8~z!,r~z!,z#

5
1

2
KcE

0

L

dz„r9~z!…2@11~r8~z!!2#25/2

1
1

2E0

LE
0

L

dzdz8

3A11„r8~z!…2A11„r8~z8!…2V„ur ~z!2r ~z8!u…. ~3!

The Euler-Lagrange equation for this free energy reads

]L
]r~z!

2
d

dz

]L
]r8~z!

1
d2

dz2

]L
]r9~z!

50. ~4!

Since here we will be interested only in the limit of a straig
rod solution, we can linearize Eq.~4!,

Kc

d4r~z!

dz4
2E

0

L

dz8
d

dzS dr~z!

dz
V„ur ~z!2r ~z8!u…D

52E
0

L

dz8
]V„ur ~z!2r ~z8!u…

]r~z!
. ~5!

The first term on the left-hand side~lhs! of Eq. ~5! stems
from the curvature energy. The second is the longitudi
stress acting along the deformed rod. The term on the
corresponds to the transverse bending force@16#. Both of the
last two terms depend on the characteristics and the deta
the interaction potential.

By considering the first variation of the free energy at t
boundaries, we derive the boundary conditions for Eq.~5!.
Assuming that both ends are free, i.e., that the variation
dr(z50,L) anddr8(z50,L) are arbitrary, we find

r9~z50,L !50,

Fr-~z50,L !2r8~z50,L !E
0

L

dz8V„r ~z50,L !2r ~z8!…G50.

~6!
e
is
to
a
-

t

l
hs

of

of

In the case of short range interactions, the rhs term of
Euler-Lagrange equation, Eq.~5!, can be simplified further.
Significant contributions to the integral on the rhs of Eq.~5!
come only from the points along the polymer for whichz and
z8 are not very far apart. Therefore, one can deve
V„r (z)2r (z8)… in powers of z2z8, truncating the Taylor
expansion at the first order term

r~z8!2r~z!.
dr~z!

dz
~z2z8!1•••

r ~z!2r ~z8!5„z2z8,r~z!2r~z8!…

.~z2z8!S 1,
dr~z!

dz D . ~7!

Thus we end up with the following approximation:

]V„ur ~z!2r ~z8!…u
]r~z!

.
]V~ uuu!

]u

3
r8~z!~z2z8!

uz2z8u@11~1/2!„r8~z!…21•••#

.
]V~ uz2z8u!

]z
r8~z!1••• . ~8!

To the lowest order inr8(z), the Euler-Lagrange equatio
reads

Kcr( iv)~z!2E
0

L

dz8V~ uz2z8u!r9~z!.0. ~9!

Equation~9! is the fundamental mean-field equation descr
ing the shape of the elastic rod in the limit of small defo
mations and short range self-interactions. It is closely rela
to the Schro¨dinger equation if one introduces the variab
u(z)[r9(z). One finds

u9~z!2V2~z!u~z!50

with V2~z!5Kc
21E

0

L

dz8V~ uz2z8u!, ~10!

and the boundary condition assumes the form

u~z50,L !50. ~11!

By definition, V(z) is a symmetric function with respect t
the midpoint of the rod. By integratingu(z)5r9(z), one also
gets the part that corresponds tor9(z)50, i.e., r(z)5A
1Bz, corresponding to a straight undeformed rod. The fi
u(z) is therefore a good measure of how much the polym
is deformed away from the straight rod configuration. In t
Eulerian description allu(z)’s are coplanar.

The mean-field equation, Eq.~10!, is not easily solvable
except for a limited variety of potentialsV(z). Nevertheless,
a formal solution can be obtained by introducing the follo
ing ansatz foru(z), assumed now to lie within a single plan
~Eulerian description!:

u~z!5Ch~z!sin„F~z,0!…. ~12!
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C is a normalization constant introduced in order to ma
h(z) dimensionless. The functionsh(z) andF(z,0) are eas-
ily shown to satisfy the following set of equations:

h9~z!1V2~z!h~z!2h~z!„F8~z,z8!…250

„h2~z!F8~z,z8!…850. ~13!

The instability point is reached when the following identi
is fulfilled:

1

LE0

L dt

h2~ t !
5p, ~14!

which follows from the fact that the non-trivial solutio
should satisfy the boundary condition Eq.~11! which is
translated into sinF„(L,0)…50. Equation ~14! selects the
lowest mode compatible with this condition.

Because the functionh(z) still has to be evaluated, this i
nothing but a formal statement of the properties of the so
tion of the mean-field equation. The general properties
be obtained from a WKB ansatz@17#. At this level, the com-
parability h22(z);V(z), leads to a stability limit described
by

E
0

L

dzAU E
0

L

dz8bV~ uz2z8u!U5AbKcp. ~15!

The necessary condition for the existence of the instabilit

E
0

L

dz8V~ uz2z8u!,0. ~16!

The properties of this instability~bifurcation! point are the
same as in the case of the simpler Euler instability where
elastic rod is simply compressed at both ends by a transv
force. This latter case has previously been considered
Manning @13#.

III. MEAN-FIELD SOLUTION FOR DIFFERENT MODEL
POTENTIALS

In order to get a feel for the solutions of the mean-fie
equation for the shape of the self-attracting polymer cha
Eq. ~10!, we solve it for three different model interactio
potentials,V(r ): A finite potential well, an exponential po
tential, and a counterion correlation potential. Approxim
analytical solutions can be obtained only for the first tw
potentials.

In the case of a finite potential well,

V~r !5H 2V0 if r ,r 0 ,

0 otherwise,
~17!

which leads to
e

-
n

is

e
se

by

,

e

V2~z!5Kc
21E

0

L

dz8V~ uz2z8u!

55
2

2V0r 0

Kc
, r 0,z,L2r 0 ,

2
V0~z1r 0!

Kc
, z,r 0 ,

2
V0~L2z1r 0!

Kc
, L2r 0,z,L.

~18!

The solutions of the mean-field equation, Eq.~10!, with this
potential are the angular functions and the Airy functio
@18#. Taking into account the boundary condition and t
continuity of the solution and its derivatives at the discon
nuities of the potential, Eq.~17!, we obtain the following
approximate form for the critical magnitude ofVcr :

Vcrr 0L2

Kc
;

p2

2 S 11
p2r 0

3

6L3
1••• D . ~19!

For large enoughL, the scaling behavior ofVcr has already
been determined by Manning@13#. Obviously, the scaling
form derived in Ref.@13# is only valid when the condition
r 0 /L!1 is satisfied.

The next explicitly solvable model is the exponential p
tential, which can be viewed as a generic form of a sh
range potential. Here

V~r !52V0e2r /r 0, ~20!

whereV0 is a constant. For this potential

V2~z!5Kc
21E

0

L

dz8V~ uz2z8u!

5
2V0r 0

Kc
2

2V0r 0

Kc
e2L/2r 0 cosh~z/r 0!, ~21!

where we have displaced the origin of thez axis to the mid-
point of the polymer chain, i.e.,z˜z1L/2. Introducing the
variable 2t5z/r 0, we obtain the mean-field equation, E
~10!, in the form

d2y~ t !

dt2
2@a22q cosh~2t !#y~ t !50, ~22!

which is equivalent to the modified Mathieu equation w
standard parametersa528V0r 0

3/Kc and q524V0 /
Kcr 0

3 exp@2(L/r0)/2# @18#. There is only one solution of this
equation which satisfies the requirements of being both s
metric with respect to the origin ofz axis, and finite in the
limit q˜0:

y~ t !; (
n52`

n51`

c2n
~s!K2n1s@2Aq cosh~ t !#, ~23!

wheres is the solution of the Hill equation@19#,
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sin2S p

2
sD52D~0!sinh2S p

2
AaD , ~24!

with Kn(x) denoting the modified Bessel function, andD(0)
the Hill determinant fors50 @19#. This equation can be
solved explicitly only in a limit that would correspond t
L/r 0@1. In this limit D(0).1 wherefrom

sin2S p

2
sD.2sinh2S p

2
AaD⇒s.ıAa. ~25!

To the lowest order, i.e., forn50, the solution of the Schro¨-
dinger equation reads

y~ t !;KıAa~2Aq cosht !. ~26!

The boundary condition att56L/r 0/2 thus comes out as

KıAaFAa

2
~11e2~L/r 0!/2!G.0, ~27!

and has to be determined fora58uV0ur 0
3/Kc. Only the

asymptotic form of the solution can be obtained explicitly,
follows:

Vcrr 0L2

Kc
;

p2

2 S 114p2
r 0

3

L3
1••• D , ~28!

not unlike the result for the finite potential well. The deta
of the interaction potential thus, at least in the asympto
limit, do not appear to matter much. Clearly, the asympto
form derived by Manning@13# again provides a reasonab
description of the point of instability, the lowest order dev
tion from it varying as (r 0 /L)3.

The last form of the fluctuation potential that we consid
is the asymptotic form of the effective pairwise additive for
of the counterion correlation potential derived in Re
@3,14#:

V~r !52V0a2S e2r /r 0

r D 2

[2uv0u
e2kr

r 2 . ~29!

There is no simple analytical result that one can derive
this interaction potential even in the asymptotic limit. T
numerical solution is, however, revealing enough, see Fig
Apparently the finite range of the potential has even l
effect on the stability limit than in the previous two cases
equalr 0. The stability limit is extremely well approximate
by the WKB ansatz Eq.~15! which suggests that the critica
strength of the attractive potential inducing buckling sho
be inversely proportional to the length of the chain squar

Comparing the three model potentials one sees that
effect of the finite range of the potential is most pronounc
for the exponential potential and least pronounced for
correlation form, Eq.~29!. At the mean-field level, the de
tailed form of the attractive part of the intrachain potentia
thus of minor importance for a long enough chain.

IV. FLUCTUATIONS: ‘‘SEMICLASSICAL THEORY’’

The mean-field theory analyzed above completely igno
the effects of thermal fluctuations on the conformatio
s

c
c

-

r

.

r

2.
s
r

d.
he
d
e

s
l

properties of the chain. To include these effects at the m
primitive level, we now evaluate the partition function of th
chain if the mesoscopic Hamiltonian is expanded up to s
ond order in the fluctuations around a straight rodlike co
figuration. In analogy with quantum mechanics, Odijk@11#
has dubbed this type of approach the ‘‘semiclassical’’ the
of buckling. The fluctuations are treated very approximat
in this scheme and as soon as they become large enough
whole approximation breaks down. This happens, of cou
right at the instability. Still we will argue that this general
zation of the mean-field formalism will give us trends co
cerning the conformational properties of the chain close
the buckling transition.

In order to treat the effect of the fluctuations on the s
bility properties of the self-interacting polymer chain, w
first of all write down the free energy of the chain subject
small conformational fluctuations. An expansion is pe
formed on the basis of Eq.~3!, in the limit of r8(z)!1, with
the result

F;
1

2
KcE

0

L

dz„r9~z!…21
1

2E0

LE
0

L

dzdz8V~ uz2z8u!

1
1

4E0

LE
0

L

dzdz8@„r8~z!!21„r8~z8!…2]V~ uz2z8u!1•••

~30!

This harmonic form of the free energy we now write with
new independent variabler8(z)5w(z) in the form

F„w~z!,w8~z!,z…;F01
1

2
KcS E

0

L

dz„w8~z!…2

1E
0

L

dzV2~z!w2~z! D , ~31!

FIG. 2. Critical strength of the interaction potential, in terms
the dimensionles parameter (Vcr /V0)(L/r 0)2, with V05Kc /r 0

3, as a
function of the dimensionless length of the rodL/r 0 at different
values of the screening parameterr 0 for the three models of attrac
tive potentials: Finite potential well, Eq.~17!, exponential potential,
Eq. ~20!, and the general correlation potential, Eq.~29!. The bend-
ing rigidities have been chosen in such a way that at largeL/r 0 the
curves coincide.
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with

F05
1

2E0

LE
0

L

dzdz8V~ uz2z8u! ~32!

and

V2~z!5Kc
21E

0

L

dz8V~ uz2z8u!. ~33!

The propagator for a harmonic action given by the Ham
tonian, Eq.~31!, can be evaluated analytically@20# and is
determined by quantities characterizing the ‘‘classical’’ s
lution, as calculated via the Euler-Lagrange equation that
can derive from the free energy~or ‘‘Lagrangian’’!, Eq.~31!.
In terms of the local curvature,w8(z), the propagator can b
derived in the form

K„w8~z!,z;w8~z8!,z8…

5E •••E Dw~z!e2bF„w8(z),w8(z8);z,z8…

5det21/2S ]2bFcl„w8~z!,w8~z8!;z,z8…

]w8~z!]w8~z8!
D

3exp@2bFcl„w8~z!,w8~z8!;z,z8…#, ~34!

where Fcl„w8(z),w8(z8);z,z8… is the ‘‘classical’’ contribu-
tion to the free energy, Eq.~31!, evaluated for thew(z)
which is a solution of the Euler-Lagrange equation, Eq.~10!.
The propagator can now be written in closed form@21#:

K„w~z!,z;w~z8!,z8…

5S sinF~z,z8!

r~z!r~z8!
D expS 2

bKc cosF~z,z8!

2 sinF~z,z8!

3L@r2~z!„w8~z!…21r2~z8!„w8~z8!…2#

1bKcLw8~z!w8~z8!
r~z!r~z8!

sinF~z,z8!
D , ~35!

where v1(z)5r(z)sinF(z,z8) and v2(z)5r(z)cosF(z,z8)
are just two linearly independent solutions of Eq.~10!. The
function r(z) in Eq. ~35! is a solution of the Ermakov
Pinney equation@22#,

r9~z!1V2~z!r~z!2
1

r3~z!
50, ~36!

while F(z,z8) can be derived in the form

F~z,z8!5
1

LEz8

z dt

r2~ t !
. ~37!

All this follows directly from Eq. ~13!. All other derived
quantities can now be obtained with the help of this lo
curvature propagator.

The density distribution functionP@w8(z)# for the curva-
ture is obtained in a straight forward way from the propa
-

-
e

l

-

tor. Assuming free boundary conditionsr9(z50,L)5w8(z
50,L)50, one obtains the curvature density distributi
function as follows:

P@w8~z!#;expS 2
bKcL

2
@cotF~0,z!

1cotF~z,L !#r2~z!„w8~z!…2D . ~38!

The normalization constant is irrelevant, as we will be on
interested in the average of„w8(z)…2. Evaluating now the
local curvature fluctuations at the midpoint of the polym
chain,z5L/2, we are left with

^„w8~L/2!…2&5

E dyy2P@y~z5L/2!#

E dyP@y~z5L/2!#

5
1

bKcLr2~L/2!
tanS 1

LE0

L dt

2r2~ t !
D , ~39!

where ^•••& indicates thermal averaging. The effect of th
fluctuations in the harmonic limit can now be assessed
follows. Clearly, at the instabilitŷ „w8(L/2)…2& should be-
come large. Just how large is difficult to see from Eq.~39!
since the derivation is valid only in the limit of small fluc
tuations. Nevertheless, following Odijk’s reasoning@11#, we
claim that the instability sets in as soon as the relative fl
tuations in the midpoint become larger thanO(1), i.e.,
^„w8(L/2)…2&r2(L/2)5c05O(1). It is difficult to say more
than that without actually solving the fundamental equati
Eq. ~36!. Close to the instability point, the lowest order co
tribution to the formal solution of the above equation rea

r2~L/2!^„w8~L/2!…2&;
1

bKcLH p/22~1/L !E
0

L

@dt/2r2~ t !#J .

~40!

Within the WKB approximation this result has a very inte
esting interpretation. Here the above instability limit can
written in the following form, with explicit dependence o
the interaction potential

E
0

L

dzAU E
0

L

dz8bV~ uz2z8u!U
;pAbKcS 12

1

bKcL

1

r2~L/2!^„w8~L/2!…2&
D . ~41!

If we compare this result with the pure mean-field result, E
~15!, which excludes any effect of fluctuations, the instabil
point is obviously reached when the strength of the poten
reaches the same value as one finds in the mean-field c
except now the value of the elastic constant is renormali
according to
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bKc˜bKc22
1

r2~L/2!^„w8~L/2!…2&
. ~42!

This renormalization of the elastic constant is obviously flu
tuational and is thus linear in temperature. Clearly, the ab
reasoning is not quantitatively valid since we are stretch
the harmonic theory into a regime where it is not valid. Ho
ever, one can hope that it bears out the correct tendencie
the behavior of this system.

It thus appears that the ‘‘semiclassical’’ theory of buc
ling would lead to the same type of instability as the me
field theory, but with the persistence length or, equivalen
the elastic modulus taking on a smaller value than the b
value. In other words, thermal fluctuations appear to ren
malize the persistence length to a smaller value than the
value. This is exactly the opposite of what happens in
case of purely repulsive segment-segment interactions@23#.

How much of this scenario remains valid in the ca
where fluctuations cannot be dealt with as a small pertu
tion, but are essential to the behavior of the system?
answer to this question presupposes the complete solutio
the statistical mechanical problem of the self-interacting s
polymer chain. This solution can be obtained only in an
proximate form such as we derive below.

V. FLUCTUATIONS: SYSTEMATIC 1/ d EXPANSION

In order to treat the fluctuations on an appropriate le
one has to go beyond the simple-minded approximate
monic or ‘‘semiclassical’’ theory we described above. In th
section we will briefly outline one approach that goes beyo
the semiclassical theory. We wish, in particular, to introdu
a program which allows for a reasonably straightforwa
approximate calculation of the partition function and fr
energy for a semiflexible polymer whose monomers inter
via a pair potential. The formalism we develop has alrea
been applied to describe the conformations and ther
properties of other intrinsically flexible materials, includin
membranes. Thus, the formalism has been used to predic
conformational behavior of fluid membranes@24# and teth-
ered manifolds, with@25,26# and without @27# long-range
monomer interactions. In a recent study@28# of semiflexible
polymers with noninteracting monomers (V50) an ap-
proach, similar to the one introduced here, was used.

For the chains under considerations, we wish to rein
duce the general parametrizationr (s) and we wish explicitly
to enforce the constraint of ‘‘inextensibility’’]sr (s)•]sr (s)
51. The form of the Hamiltonian we shall prefer to use
then, cf. Eq.~1!,

H5E ds
Kc

2 S ]2r

]s2D 2

1
1

2E E dsds8V„ur ~s!2r ~s8!u….

~43!

The partition, itself, is the path integral over polymer confo
mations weighted by the Boltzmann weight, exp(2bH),

Z5E D@r ~s!#)
s

d3@]sr ~s!•]sr ~s!21#exp~2bH!,

~44!
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whereb51/kBT. The functionald function guarantees tha
the integral involves only such configurations that satisfy
condition of ‘‘inextensibility.’’

Two problems complicate the evaluation of the partiti
function. The first is imposed by the functionald function
and the constraint of ‘‘inextensibility’’ which requires us t
include in the sum over polymer conformationsr , only those
for which the tangent vectorst5]sr lie on a unit sphere. The
second problem which complicates the evaluation of the p
tition function is the fact that, rather than being a simp
quadratic~Gaussian! form, the intermonomer interaction po
tential is, in realistic situations, a complicated, nonlocal fun
tion. A systematic way of addressing these problems ta
advantage of a ‘‘Lagrange multiplier’’ technique. Thus, f
instance, one can enforce the constraint of ‘‘inextensibility
if one introduces an auxiliary field or ‘‘Lagrange multiplier
l(s) and adds to the Hamiltonian the term

dH15
1

2E dsl~s!@„]sr ~s!…221#. ~45!

Similarly, in order to avoid the complicating nonloca
term in the pair potential, one can introduce the independ
field B5B(s,s8), and make the replacementV@„r (s)
2r (s8)…2#˜V(B). In order to be able to make this replac
ment in a systematic way, one must somehow enforce
constraint„r (s)2r (s8)…25B. One can do that via yet an
other auxillary field ~‘‘Lagrange multiplier’’! @25,26# and
one is thus led to introduce another term in the Hamiltoni

dH25
1

2E dsds8g~s,s8!@„r ~s!2r ~s8!…22B~s,s8!#.

~46!

Given these modifications, the evaluation of the partiti
function now involves a much easier, unconstrained sum
tion over polymer conformationsr . The price one has to pa
for this simplification is that, in addition to summing overr ,
one must now sum overl, B, andg as well:

Z5E D@r ~s!#D@l~s!#D@g~s,s8!#D@B~s,s8!#

3exp@2b~H1dH11dH2!#. ~47!

In the expression for the partition function, Eq.~47!, it is
understood that the summation overl and g are over con-
tours that begin at2 i` and end at1 i`.

It is easy to see that the introduction of ‘‘Lagrange mu
tipliers’’ provides us with an expression for the partitio
function which is quadratic inr and thereforeexactlysolv-
able as for the integration over polymer conformations.
one fixesC5$l,B,g% and expands about a particular refe
ence configuration,r5r0 which has the property of minimiz
ing H25H1dH11dH2, i.e., dH2@r #/dr u050, then one
finds, after integration, an effective Hamiltonian

He@r0 ,C#5H2@r0 ,C#1kBT
d

2
Tr

3 ln@d~s2s8!(Kc]s
42]sl]s!12gc~s,s8!],

~48!
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where

gc~s,s8!5g~s,s8!2
1

2
d~s2s8!E ds9@g~s,s9!1g~s9,s8!#,

~49!

and d is the number of components of the vectorr or,
equivalently, the dimension of embedding space. If one
nores end effects~by considering a closed polymer, or b
enforcing periodic boundary conditions, say!, one can as-
sume that l is a constant, and thatB(s,s8)5B(s
2s8), g(s,s8)5g(s2s8). It is then possible to perform
the diagonalization in terms of Fourier modes, so that

Tr ln~••• !˜E dsE dq

2p
ln~••• !,

Kc]s
42l]s

2
˜Kcq

41lq2, ~50!

gc~s,s8!˜g~q!2g~q50!,

whereg(q) is the Fourier transform ofg(s2s8). The calcu-
lation ofHe@r0 ,C# is then, obviously, straightforward.

What remains in the calculation of the partition functio
and the free energy, is the more difficult integrations overl,
B, andg. These integrations can not be performed exactly
the general case. If, however,d˜`, the integrals are com
pletely dominated by the contributions from the saddle po
obtained by minimizing with respect tol, B, andg. In this
limit, the exactexpression for the free energy of the refe
ence configurationr0 is therefore

F@r0#5F01SH2@r0 ,C#1kBT
d

2
Tr ln@Kc]s

42l]s
2

12gc~s,s8!# D
SP

, ~51!

where F0 is an unimportant constant. SP implies that t
expression is evaluated at the saddle point and the Tr ln
can be evaluated with the help of Eq.~50!. For finite d,
corrections to the saddle point estimate will be of ordero(d)
and may be calculated via asystematic1/d expansion@12#.
We shall not do so, being content with the calculation by
saddle point method. It is possible to show that this appro
mation is equivalent to relaxing the local constrain
]sr (s)•]sr (s)51 and„r (s)2r (s8)…25B(s,s8), and replac-
ing them by the global constraints^]sr (s)•]sr (s)&51, and
^„r (s)2r (s8)…2&5B(s,s8) @28,29#.

We can now carry out a more quantitative discussion
the properties of semiflexible polymers with pairwise mon
mer interactions, which are here taken to be attract
Within the formalism described above, such a discuss
can, unfortunately, only be performed for simple choices
reference configurationsr0. Here we shall confine ourselve
to the choicer05zse, where e is a one-dimensional uni
vector, andz is a ‘‘stretching factor’’@30#, whose nature will
be described below.

It turns out that very useful information is contained in t
saddle point equations and we shall analyze these in s
-

n

t,

rt

e
i-

f
-
.
n
f

e

detail. By functionally minimizing with respect tol, B(s
2s8), andg(s2s8), one finds after some manipulations

15
]r0

]s

]r0

]s
1dkBTE dq

2p

q2

Kcq
411lq212gc~q!

,

~52!

gc~q!5E ds@12cos~qs!#V8@B~s!#, ~53!

B~s2s8!5„r0~s!2r0~s8!…2

12dkBTE dq

2p

12cos@q~s2s8!#

Kcq
41lq212gc~q!

, ~54!

where V8(z)5]zV. These equations are special cases
more general equations obtained by Le Doussal@25# and by
Palmeri and Guitter@26# in their analysis of elastic manifold
with long-range monomer interactions. Of these equatio
the first, Eq. ~52!, guarantees that the constrai
]sr (s)•]sr (s)51 is satisfied globally, and the third equa
tion, Eq. ~54!, takes care of the constraint„r (s)2r (s8)…2

5B(s,s8). Finally, the second equation, Eq.~53!, determines
an effective ‘‘self-energy’’ of the polymer. This self-energ
may be expanded in~even! powers ofq, and the expansion
coefficients determine contributions to the renormalized e
tic constants, as may be seen from the expression for
‘‘propagator’’ K21(q)51/@Kcq

41lq212gc(q)#. Roughly
speaking, the expansion coefficients tell how thenonlocal
interactions modify the parameters involved in alocal de-
scription of the polymer. In particularV8„B(s)…, will, in part,
determine a contribution to the total, renormalized bend
rigidity, as may be seen by analyzing Eq.~53! ~see further
below!.

If, in addition to minimizing with respect toC, one mini-
mizes with respect toz, so as to determine the best choice
configuration in the class of configurations defined by
equationr05zse, one finds, in agreement with Refs.@25,26#,

l (R)5]q
2K~q!uq5050 or z50, ~55!

wherel (R) is a renormalized ‘‘Lagrangian multiplier.’’ Ifz
Þ0, the first equation in Eq.~55! expresses that a straigh
semiflexible polymer is in a stress-free configuration~if the
polymer were subjected to external stress, the applied st
and l (R) would have to balance!. If, on the other hand,z
50, typical conformations of the polymer will deviate sig
nificantly from the straight configuration, and we may expe
strongly wrinkled configurations to dominate, or the polym
to be in a collapsed state~see below!.

It is interesting first to analyze the possibility of having
truly straight configuration, withzÞ0, as the equilibrium
configuration of the polymer. Such a straight configurati
can exist atT50, even if the interactions are attractiv
However, at nonzero temperatures we expect that only c
figurational entropy, which is expected to favor random-wa
behavior, can prevent the polymer from collapsing and
polymer will, irrespective of whether it collapses or not, ha
equilibrium conformations that deviate significantly from
rod configuration. Indeed, one finds that forzÞ0, the inte-
gral in Eq. ~52! is disturbed by infrared divergences whic
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can only be removed in the special caseKc5`. This result
must be seen as indicating that the straight-rod configura
is unstable. As a consequence, in the thermodynamic lim
phase characterized by a straight average configuration~the
ordered phase! exists only in the limitT50 ~or Kc5`) and
is otherwise destroyed by thermal fluctuations.

Further analysis of the conformational properties of
chain forT.0 must rely on a more detailed analysis of t
saddle point equations, Eqs.~52!–~55!. What can we expec
from such an analysis? As we have already indicated
finite temperatures, we expect that polymers whose mo
mers attract have to compromise between direct interact
which, at short scales, favor bending and, at larger sca
favor collapse of the chain in order for monomers to
close, and the different effects which counteract these p
cesses, namely, the initial bending rigidity and conform
tional entropy. If this picture is correct then we must,
agreement with the semiclassical analysis of Sec. IV, exp
to find the effective bending rigidity, and the persisten
length, to decrease significantly, and we must expect
theory to signal that collapse of the chain is favorable
strong enough interactions between monomers. The qu
tative analysis confirms these intuitive considerations.
focus on the change of the bending rigidity, which may
obtained by expansion of Eq.~53!,

dKc522E
2`

`

ds
s4

4!
V8~B!. ~56!

Knowing dKc , we can calculate the total, renormalized
gidity asKc

(R)5Kc1dKc .
It is instructive first to consider the situation nearT50

@31#. At T50 we may assumez51 and for the interaction
potentialV(r )52(uv0u/r 2)exp(2kr ), we find,

dKc52S 2uv0u
2 D E

0

`ds

12
e2ks~ks11!52

1

6

uv0u
k

. ~57!

It is tempting to suggest that this significant reduction in
rigidity could signal that the straight rodlike configuratio
could become unstable even atT50. As we saw in the pre-
vious sections~see in particular Secs. II and III! such an
instability, namely, the buckling instability, does appear.

Now, at finite temperaturesT.0 ~and finite values of the
‘‘bare’’ rigidity Kc), theT50 estimate will not describe th
conformational properties of the chain very well. We mu
now takez50, while enforcing the constraint of inextens
bility by requiring l (R) to assume a nonzero value. In th
following we shall assume that in analyzinggc(q), it is suf-
ficient to retain terms up to and including the fourth ord
term in the Taylor expansion ofgc in powers ofq. This is
expected to be a valid assumption as long asl and Kc are
not both small. We then findgc.(dl)q21(dKc)q

4, where
dl is the contribution to the ‘‘Lagrange multiplier’’ from
nonlocal interactions, andl (R)5l1dl. With this assump-
tion being made, it is easy to solve Eqs.~52! and ~54!, with
the result

l (R)5S dkBT

2 D 2 1

Kc
(R)

, ~58!
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B~s!5
dkBT

2Kc
(R) @j2s1j3~e2s/j21!#, ~59!

wherej5AKc
(R)/l (R) is a crossover length which, in the cas

analyzed here, reduces toj5(2/d) l p
(R). We see that as long

as there exists a self-consistent solution fordKc , the corre-
lation function B(s2s8)5^„r (s)2r (s8)…2& behaves as
^„r (s)2r (s8)…2}(j/ l p

(R))us2s8u2}us2s8u2 for small values
of s2s8, reflecting that the polymer is ‘‘straight’’ on shor
scales. We also see that^„r (s)2r (s8)…2&}(kBT/l (R))us
2s8u, for larges2s8, signaling random-walk behavior.

A self-consistent solution fordKc , may be obtained from
Eq. ~56! after inserting the solution to the saddle point equ
tions Eqs.~58! and ~59!. One derives an integral equatio
whose evaluation, is complicated, for instance, by the cro
over between the rigid-rod regime and the random-walk
gime. In order to obtain the full solution to the problem,
numerical study of the integral equation must be carried o
If one is satisfied with qualitative and asymptotic results, o
can analyze the integral using the method of steepest
scent.

The outcome of numerical and qualitative analysis is
following. If one fixesk andl p , and determines numericall
how l p

(R)/ l p ~or dKc /Kc) depends onuv0u one finds results of
which the curve in Fig. 3 is an example.

The curve shows that for large values ofl p
(R)/ l p ~small

values ofudKcu) and small values ofv0, a solution exists for
which l p

(R)/ l p will decrease@ udKC(v0)/Kcu will increase#
with uv0u, as it should. For values ofl p

(R)/ l p large compared
with k l p , u( l p

(R)2 l p)/ l pu5udKc /Kcu is found to vary lin-
early with uv0u. This same result is found by a steepest d
scent analysis, and agrees with theT50 result displayed in

FIG. 3. The solution of Eq.~56!, the relation between the
strength of segmental attraction and the change in apparent ben
modulus, fork l p510. The strength of the interaction,uv0u is mea-
sured in units ofkBT, and the renormalized bending rigidityl p

(R) is
measured in units of the ‘‘bare’’ persistence lengthl p . Observe that
l p
(R)/ l p depends linearly onuv0u/kBT for small values ofuv0u/kBT.

There exists auv0cu where there is no longer a physically acceptab
solution for l p

(R)/ l p(uv0u), implying a loss of stability of the coiled
configuration of the polyelectrolyte chain.
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Eq. ~57!. When uv0u is increased further, the decrease
l p
(R)/ l p ~increase inudKc /Kcu) speeds up. Eventually, fo

someuv0cu, the rate of change ofl p
(R)/ l p and of udKc /Kcu is

‘‘predicted’’ to become infinitely fast. If one then increas
uv0u beyonduv0c u, one finds no solution fordKc /Kc which
satisfies the demand thatudKc /Kcu increases asuv0u. This
result is in good agreement with the results of a formal ste
est descent analysis which, fork l p˜0, predicts that

dKc5v0

ls
6

~Kc
(R)!5

3O~1!, ~60!

with a nontrivial relation betweendKc and v0 and the
screening lengthls51/k. Physically, the latter result is no
acceptable and it must be seen as an indication that
theory breaks down. In fact, we believe that the solutionz
50 with correlations well described by a random wa
model will now have to be replaced by a solution charac
izing the collapsed state. If our analysis is correct, we
therefore conclude that if we investigate the polymer at fin
temperatures~finite ‘‘bare’’ bending rigidity!, we will find
that not only will it wish to bend, if the interactions betwee
monomers are strong enough, it will also prefer to collap
We illustrate these predictions of the conformational beh
ior in the phase diagram, Fig. 4. The interesting feature
this phase diagram is the line of collapse transitions wh
exist for finite values ofKc and terminates at the bucklin
instability point atKc5`. Based on our formal steepest d
scent calculation, we predict that for large enou
1/Kc , vc(1/Kc);(1/Kc)

26.

FIG. 4. The phase diagram for a semiflexible polymer who
dimensionless bending rigidity isKc /K0, whereK05kBT/k, and
whose monomers interact via a dimensionless attractive potenti
strengthuv0u/kBT. Buckling of a rod may take place foruv0u/kBT,
greater than some value, when the bending rigidity is effectiv
infinite. A collapse transition occurs at a uniqueuv0(Kc)u/kBT for
each finite value ofKc /K0.
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VI. DISCUSSION

In the above analysis we explored the connection betw
buckling of self-interacting elastic rods and polymer collap
because of attractive segment-segment interactions.
buckling transition is effectively the same as an Euler ins
bility under externally imposed compression forces@10, 16#.
We derived an elastic equilibrium equation whose solutio
determine the state of the elastic rod in the presence o
tractive segment-segment interactions. In effect, the buck
state corresponds to the bound state solutions o
Schrödinger-like equation to which the elastic equilibriu
equation is closely related. Except for extremely simple
teraction potentials this equation, of course, cannot be so
analytically. Nevertheless we find, that the WKB solutio
quite accurately describes the qualitative as well as som
the quantitative aspects of the numerical solution, especi
with short range potentials.

Qualitatively, the introduction of thermal fluctuations
the harmonic level, does not change the picture of the bu
ling transition. It nevertheless points to the conclusion t
conformational fluctuations will renormalize the value of t
persistence length. This effect is quite well known, if n
understood in all its details, in the case of repulsive pot
tials @23, 31–33# where the interactions tend to stiffen up th
chain. The attractive potential, not surprisingly, acts in t
reverse direction, thus diminishing the persistence len
The harmonic approximation, valid strictly only in the lim
of small fluctuations, makes the buckling transition, whe
fluctuations may become prohibitively large, difficult to an
lyze in quantitative terms. We nevertheless argue that i
still there, but displaced towards a different point in the p
rameter space. This displacement is predicted to be linea
(bKc)

21.
For unconstrained fluctuations it is difficult to put forth

comprehensive theory. We use the systematic 1/d expansion,
which has previously been applied in studies of higher
mensional self-interacting manifolds@25,26# as a vehicle to
build a more general theory of the self-attracting polym
chain. On the level of approximation provided by the sy
tematic 1/d expansion it appears that buckling in the str
sense of this word is preserved only atT˜0 or, equiva-
lently, for infinitely stiff chains,Kc˜`. At any finite tem-
perature, or finite persistence length, the buckling transit
is turned into a collapse of the same type as already ex
sively investigated in the case of self-attracting ideally fle
ible polymers@7, 34#.

This scenario of course depends on the level of appro
mation provided by the 1/d expansion in thed˜` limit.
Usually the variational approach, being nonperturbati
does not fare badly; we have confidence that the salient
tures of the phase diagram for the self-interacting stiff po
mer chain are not far off from the picture put fourth her
The weakest link in our story would appear to be the ans
r05zse. It obviously cannot describe the more realistic to
oidal shapes of the, e.g., DNA aggregates. But it should c
tainly work fine as long as we are not interested in the
tailed structure of the collapsed phase but only in the ph
boundary.

At present detailed predictions for experiments are un
alistic. At least the orientation dependent part of the inter
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tion should be included in order to describe the nematic
ture @7# of the condensed state. One thing, however,
consider to be a robust result of our calculations: counte
correlation attractions diminish the persistence length. T
opposite effect of the stiffening of the chain with repulsi
intersegment interactions is of course well known, thou
perhaps less well understood@23,32,33#. The effect alluded
to here is not just the OSF formula with the sign reversed
has a completely different screening length and magnit
dependence than the OSF result.

The linearized version of this effect is embodied in Fig.
Recent experiments on stretched DNA in the presence
variable amount of Co(NH3)6

31 @35# clearly show that the
effective persistence length gets smaller the higher the c
centration of the condensing agent, that without doubt c
fers some correlation attraction to the intersegment inte
tion potential. In these experiments the concentration of
condensing agent is too small to induce a full blown collap
ur

o-

nt
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of DNA, but still, the incipient effects are seen in the smal
effective persistence length. Qualitatively this is exac
what one expects from our theory.

Also the present form of the theory seems to be w
suited to describe the effects of the correlation attractions
the elastic extension of the chain. The interplay between
lapse and stretching seems to be well within the reach of
present formalism and will be pursued in all the details in
future @36#.
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